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75252 Paris Cedex 05, France
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Abstract. In this paper we review the different relativistic and QED contributions to energies, ionic radii,
transition probabilities and Landé g-factors in super-heavy elements, with the help of the MultiConfigura-
tion Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by
including it in the self-consistent field process are demonstrated. State of the art radiative corrections are
included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation
and find that the non-relativistic offset can be unexpectedly large.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 31.25.Eb Elec-
tron correlation calculations for atoms and ions: ground state – 31.25.Jf Electron correlation calculations
for atoms and ions: excited states – 32.70.Cs Oscillator strengths, lifetimes, transition moments

1 Introduction

In the last decades, accelerator-based experiments at GSI
and Dubna have lead to the discovery of super-heavy ele-
ments up to Z = 116 and 118 [1] (for a recent review see
[2]). Considerable theoretical work has been done to pre-
dict the ground configuration and the chemical properties
of those superheavy elements. Relativistic Hartree-Fock
has been used to predict the ground configuration proper-
ties of superheavy elements up to Z = 184 in the early
70’s [3,4]. The Multiconfiguration Dirac-Fock (MCDF)
method was used to predict orbital properties of elements
up to Z = 120 [5], electron binding energies up to Z = 118
[6,7], and K-shell and L-shell ionization potentials for the
superheavy elements with Z = 112, 114, 116, and 118
[8]. Ionization potential and radii of neutral and ionized
bohrium (Z = 107) and hassium (Z = 108) have been
evaluated with large scale MCDF calculations [9]. Kaldor
and co-workers have employed the relativistic coupled-
cluster method to predict ground state configuration, ion-
ization potential, electron affinity, binding energy of the
negative ion of several elements with Z ≥ 100 [10–17].

Very recently, laser spectroscopy of several fer-
mium (Z = 100) transitions has been performed, the
spectroscopy of nobelium (Z = 102) is on the way [18–20],

a e-mail: paul.indelicato@spectro.jussieu.fr
b e-mail: jean-paul.desclaux@wanadoo.fr

and large scale MCDF calculations of transition energies
and rates have been performed by several authors for su-
perheavy elements with Z = 100 [18,21], Z = 102 [21] and
Z = 103 [22], which are in reasonable agreement with the
fermium measurements.

There are however many unanswered questions, that
need to be addressed in order to assess the accuracy
and the limit of current theoretical methods. For inner-
shells, or highly ionized systems, QED effects are very
strong in superheavy elements, where the atomic number
Z approaches the limit Zα → 1 (α = 1/137.036 is the
fine structure constant), at which the point-nucleus Dirac
equation eigen-energies become singular for all s1/2 and

p1/2 states (the energy depends on
√(

j + 1
2

)2 − (Zα)2,
where j is the total angular momentum). This means
that all QED calculations must be performed for finite
nuclei, and to all orders in Zα. QED calculations for
outer-shell are very difficult. At present, only the sim-
plest one-electron, one-loop diagrams can be calculated,
using model potentials to account for the presence of
the other electrons. The evaluation of many-body effects,
that remains large for neutral and quasi-neutral systems,
is also made very difficult by the complex structure of
these atoms, in which there may be several open shells.
In that sense, methods based on Relativistic Many-Body
Perturbation theory (RMBPT) and MCDF methods are
complementary. The former one usually allowing for more
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accurate results, but limited to (relativistic) closed shell
systems minus one or plus one or at most two electrons,
while the latter is completely general but convergence be-
comes problematic for large size configuration set, partic-
ularly if one wants to optimize all orbitals.

The paper is organized as follows. In Section 2 we
present briefly the MCDF method, with emphasis on the
specific features of the code we have been using, and we
described the QED corrections that have been used in the
calculations. In Section 3 we describe specific problems
associated with the MCDF method (or more generally
to all-order methods). We thus study the non-relativistic
limit of the MCDF codes, and specific problems associated
with high-Z. In Section 4 we study a number of systems
from highly-charges ions to neutral atoms, for very large
atomic numbers. The evaluation of atomic charge distri-
bution size and Landé factors is performed in Section 5
and in Section 6 we state our conclusion.

2 Calculation of atomic wavefunctions
and transition probabilities

2.1 The MCDF method

In this work, bound-states wavefunctions are calculated
using the 2006 version of the Dirac-Fock program of
Desclaux and Indelicato, named mdfgme [23]. Details on
the Hamiltonian and the processes used to build the wave-
functions can be found elsewhere [24–27].

The total wavefunction is calculated with the help of
the variational principle. The total energy of the atomic
system is the eigenvalue of the equation

Hno pairΨΠ,J,M (. . . , ri, . . .) = EΠ,J,MΨΠ,J,M (. . . , ri, . . .),
(1)

where Π is the parity, J is the total angular momentum
eigenvalue, and M is the eigenvalue of its projection on
the z-axis Jz. Here,

Hno pair =
N∑

i=1

HD(ri) +
∑
i<j

Vij(|ri − rj |), (2)

where HD is the one electron Dirac operator and Vij is an
operator representing the electron-electron interaction of
order one in α. The expression of Vij in Coulomb gauge,
and in atomic units, is

Vij =
1
rij

(3a)

− αi · αj

rij
(3b)

− αi · αj

rij

[
cos

(ωijrij
c

)
− 1

]

+ c2(αi · ∇i)(αj · ∇j)
cos

(ωijrij

c

) − 1
ω2

ijrij
, (3c)

where rij = |ri − rj | is the inter-electronic distance, ωij is
the energy of the exchanged photon between the two elec-
trons, αi are the Dirac matrices and c is the speed of light.

We use the Coulomb gauge as it has been demonstrated
that it provides energies free from spurious contributions
at the ladder approximation level and must be used in
many-body atomic structure calculations [28,29].

The term (3a) represents the Coulomb interaction, the
term (3b) is the Gaunt (magnetic) interaction, and the last
two terms (3c) stand for the retardation operator. In this
expression the ∇ operators act only on rij and not on the
following wavefunctions.

By a series expansion of the operators in expres-
sions (3b) and (3c) in powers of ωijrij/c� 1 one obtains
the Breit interaction, which includes the leading retarda-
tion contribution of order 1/c2. The Breit interaction is,
then, the sum of the Gaunt interaction (3b) and the Breit
retardation

BR
ij =

αi · αj

2rij
− (αi · rij) (αj · rij)

2r3ij
. (4)

In the many-body part of the calculation the electron-
electron interaction is described by the sum of the
Coulomb and the Breit interactions. Higher orders in
1/c, deriving from the difference between expressions (3c)
and (4) are treated here only as a first order perturba-
tion. All calculations are done for finite nuclei using a
Fermi distribution with a tickness parameter of 2.3 fm.
The nuclear radii are taken or evaluated using formulas
from reference [30].

The MCDF method is defined by the particular choice
of a trial function to solve equation (1) as a linear combi-
nation of configuration state functions (CSF):

|ΨΠ ,J,M 〉 =
n∑

ν=1

cν |ν,Π , J,M〉 . (5)

The CSF are also eigenfunctions of the parity Π , the total
angular momentum J2 and its projection Jz . The label ν
stands for all other numbers (principal quantum number,
...) necessary to define unambiguously the CSF. The cν
are called the mixing coefficients and are obtained by di-
agonalization of the Hamiltonian matrix coming from the
minimization of the energy in equation (1) with respect
to the cν . The CSF are antisymmetric products of one-
electron wavefunctions expressed as linear combination of
Slater determinants of Dirac 4-spinors

|ν,Π , J,M〉 =
Nν∑
i=1

di

∣∣∣∣∣∣∣

ψi
1 (r1) · · · ψi

m (r1)
...

. . .
...

ψi
1 (rm) · · · ψi

m (rm)

∣∣∣∣∣∣∣
, (6)

where the ψ-s are the one-electron wavefunctions and the
coefficients di are determined by requiring that the CSF
is an eigenstate of J2 and Jz. The one-electron wavefunc-
tions are defined as

ψ (r) =
(

χµ
κ(Ω)P (r)

iχµ
−κ(Ω)Q(r)

)
, (7)

where χµ
κ is a two-component spinor, and P and Q are

respectively the large and small component of the wave-
function.
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Application of the variational principle leads to a set of
integro-differential equations, which determines the radial
wavefunctions and a Hamiltonian matrix, which provides
the mixing coefficients cν by diagonalization. The mdfgme
code provide the possibility to obtain wavefunctions and
mixing coefficient with either only the Coulomb (3a) in-
teraction used to obtain the differential equations and the
Hamiltonian matrix that is diagonalized to obtain mixing
coefficient or the full Breit operator (4). The convergence
process is based on the self-consistent field process (SCF).
For a given set of configurations, initial wavefunctions, ob-
tained for example, with a Thomas-Fermi potential, are
used to derive the Hamiltonian matrix and set of mixing
coefficients. Direct and exchange potential are constructed
for all orbitals, and the differential equations are solved.
Then a new set of potentials is constructed and the whole
process is repeated. Each time the largest variation of all
wavefunction has been reduced by an order of magnitude,
a new Hamiltonian matrix is build and diagonalized, and
a new cycle is done.

The so-called Optimized Levels (OL) method was used
to determine the wavefunction and energy for each state
involved. This allow for a full relaxation of the initial
and final states and provide much better energies and
wavefunctions. However, in this method, spin-orbitals in
the initial and final states are not orthogonal, since they
have been optimized separately. The formalism to take
in account the wavefunctions non-orthogonality in the
transition probabilities calculation has been described by
Löwdin [31] and Slater [32]. The matrix element of a one-
electron operator O between two determinants belonging
to the initial and final states can be written as

〈νΠ JM |
N∑

i=1

O (ri) |ν′Π ′J ′M ′〉 =

1
N !

∣∣∣∣∣∣∣

ψ1 (r1) · · · ψm (r1)
...

. . .
...

ψ1 (rm) · · · ψm (rm)

∣∣∣∣∣∣∣

×
m∑

i=1

O (ri)

∣∣∣∣∣∣∣

φ1 (r1) · · · φm (r1)
...

. . .
...

φ1 (rm) · · · φm (rm)

∣∣∣∣∣∣∣
, (8)

where the ψi belong to the initial state and the φi and
primes belong to the final state. If ψ = |nκµ〉 and φ =
|n′κ′µ′〉 are orthogonal, i.e., 〈nκµ|n′κ′µ′〉 = δn,n′δκ,κ′δµ,µ′ ,
the matrix element (8) reduces to one term 〈ψi|O |φi〉
where i represents the only electron that does not have
the same spin-orbital in the initial and final determinants.
Since O is a one-electron operator, only one spin-orbital
can change, otherwise the matrix element is zero. In con-
trast, when the orthogonality between initial and final
states is not enforced, one gets [31,32]

〈νΠ JM |
N∑

i=1

O (ri) |ν′Π ′J ′M ′〉 =
∑
i,j′

〈ψi|O |φj′ 〉 ξij′Dij′ ,

(9)

where Dij′ is the minor determinant obtained by crossing
out the ith row and j′th column from the determinant of
dimension N × N , made of all possible overlaps 〈ψk|φl′〉
and ξij′ = ±1 the associated phase factor.

The mdfgme code take into account non-orthogonality
for all one-particle off-diagonal operators (hyperfine ma-
trix elements, transition rates. . . ). The overlap matrix is
build and stored, and minor determinants are constructed,
and calculated using standard LU decomposition.

2.2 Evaluation of QED corrections

In superheavy elements, the influence of radiative correc-
tions must be carefully studied. Obviously the status of
the inner orbital and of the outer ones is very differ-
ent. It is not possible for the time being, to do a full
QED treatment. Here we use the one-electron self-energy
obtained using the method developed by Mohr [33,34].
These calculations have been extended first to the n = 2
shell [35,36] and then to the n = 3, n = 4 and n = 5 shells,
for |κ| ≤ 2 [37]. More recently, a new coordinate-space
renormalization method has been developed by Indelicato
and Mohr, that has allowed substantial gains in accu-
racy and ease of extension [38,39]. Of particular interest
for the present work, is the extension of these calcula-
tion to arbitrary κ values and large principal quantum
numbers [40]. All known values to date have been imple-
mented in the 2006 version of the mdfgme code, including
less accurate, inner shell ones, that covers the superheavy
elements [41,42]. The self-energy of the 1s, 2s and 2p1/2

states is corrected for finite nuclear size [43]. The self-
energy screening is taken into account here by the Welton
method [44,45], which reproduces very well other meth-
ods based on direct QED evaluation of the one-electron
self-energy diagram with screened potentials [46–48]. Both
methods however leave out reducible and vertex contribu-
tions. These two contributions, however, cancels out in the
direct evaluation of the complete set of one-loop screened
self-energy diagram with one photon exchange [49]. The
advantages of screening method, on the other hand is that
they go beyond one photon exchange, which may be im-
portant for the outer shells of neutral atoms. Recently spe-
cial studies of outer-shell screening have been performed
for alkali-like elements, using the multiple commutators
method [50,51].

The comparison between the Welton model and the re-
sults from references [50,51] is presented in Table 1. This
table confirms comparison with earlier work at lower Z.
It shows that the use of a simple scaling law, as incorpo-
rated in GRASP 92 and earlier version of mdfgme does
not provide correct values. This scaling law is obtained by
comparing the mean value of the radial coordinate over
Dirac-Fock radial wave-function 〈r〉DF to the hydrogenic
one 〈r (Zeff)〉hydr.. This allows to derive an effective atomic
number Zeff by solving 〈r (Zeff)〉hydr. = 〈r〉DF. One then
use Zeff to evaluate the self-energy screening from one-
electron self-energy calculations. The superiority of the
Welton model can be easily explained by noticing that the
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Table 1. Self-energy and self-energy screening for element 111.

Level 1s 7s
SE (point nucl.) 848.23 3.627
Welton screening −18.80 −3.283
Finite size −50.37 −0.260
Total SE (DF) 779.06 0.084
Pyykkö et al. [51]a 0.087
Pyykkö et al. [51]b 0.095
〈r〉 (GRASP) [52]c 0.018

a Screening calculated using Dirac-Fock potential. b Screening
calculated using Dirac-Slater potential fitted to EDF.

c Use hy-
drogenic values with Zeff obtained by solving 〈r (Zeff)〉hydr. =
〈r (Zeff )〉DF.

range of QED corrections is the electron Compton wave-
length ΛC = α a.u., while mean atomic orbital radii are
dominated by contributions from the n2

Z a.u. range, which
is much larger.

When dealing with very heavy elements in the limit
Zα → 1, one should consider if perturbative QED is still
a valid model. Unfortunately, we still lack the tools to an-
swer this fundamental question. However, the use of nu-
merical all-order methods may gives some partial answers.
In particular they allow to include the leading contribu-
tion to vacuum polarization to all orders by adding the
Uehling potential [53] to the MCDF differential equations.
This possibility has been implemented in the mdfgme code
as described in [54], with the help of reference [55]. It
also allows to calculate the effect of vacuum polarization
in quantities other than energies, like hyperfine structure
shifts [54], Landé g-factors [56], or transition rates. It can
also provides some hints on the oder of magnitude of QED
effects on atomic wavefunction, orbital or atom radii, and
electronic densities.

For high-Z, higher order QED corrections are also im-
portant. In the last decade, calculations have provided the
complete set of values for two-loops, one-electron diagrams
to all orders in Zα [57–61] and also low-Z expansions. All
available data has been implemented in the mdfgme code.
However, this data is limited to the n ≤ 2 shells.

3 Limitation of the MCDF method

3.1 Non-relativistic limit

The success of relativistic calculations in high-Z elements
atomic structure is impressive. It has been shown many
times, that only a fully relativistic formalism and the use
of a fully relativistic electron-electron interaction can re-
produce the correct level ordering and energy in heavy
systems. As a non-exhaustive list of example, we can cite
the case of the 1s2p 3P0–3P1 level crossing for Z = 47
in heliumlike systems [62–64], and the prediction of the
1s22s2p 3P0–3P1 inversion in Be-like iron [65], both due

to relativistic effects and Breit interaction. Relativistic ef-
fects determine also the structure of the ground configu-
ration of many systems, as was recognized for example in
the study of lawrencium which has a 7p 2P in place of a
6d 2D configuration [66–68].

There is one caveat that must be taken into considera-
tion when performing such calculations, that has been rec-
ognized in low-Z systems, but never explored in the super-
heavy elements region: it may sound rather paradoxical to
investigate the nonrelativistic limit of MCDF and, more
generally, of all-order calculations, when studying super-
heavy elements. Here we show, however, that there is a
problem that has to be taken into account if one wants to
obtain the correct fine structure splitting in all cases. We
believe it is the first time this problem is recognized in the
highly-relativistic limit.

This problem was first found many years ago, in sys-
tems like the fluorine isoelectronic sequence [69]: the non-
relativistic limit, obtained by doing c → ∞ in a MCDF
code, is not properly recovered. States with LSJ label
2S+1LJ and identical L and S, and different J , which
should have had the same energy in the non-relativistic
limit do not. The energy difference between the levels
of identical LS labels but different J is called the non-
relativistic (NR) offset. This offset leads to slightly incor-
rect fine structure in cases when a relativistic configura-
tion has several non-relativistic parents (i.e., several states
with one electron less, and different angular structure, that
can recouple to give the same configuration). This effect
can be large enough to affect comparison between theory
and experiment. It should be noted that such a problem
does not show if one works in the Extended Average Level
(EAL) version of the MCDF. In this case a single wave-
function is used for all the members of a given multiplet,
and the relaxation effects that are the source of the NR
offset disappear, at the price of less accurate transition
rates and energies, for a given configuration space.

Very recently, this non-relativistic problem was shown
to be general to any all-order methods, in which sub-
classes of many-body diagrams are re-summed, without
including all the diagrams relevant of a given order. In the
MCDF method, in particular, one should add all configu-
rations with single excitations of the kind nκ→ n′κ, that
in principle, should have no effect on the energy in a non-
relativistic calculation, due to Brillouin’s theorem [70]. In
the iso-electronic sequence investigated up to now, this ef-
fects became less severe when going to higher Z, and it
has thus never been considered in very heavy systems: in
neutral, or quasi-neutral superheavy elements, the outer-
shell structure can be complex, with several open shells,
and thus many possible parents core configurations. It is
then worthwhile to study if this problem could arise. We
have studied a number of cases. As a first example we have
studied neutral uranium. The ground state configuration
is known to be [Rn]5f36d7s2 5L6. We have calculated all
levels of the ground configuration with J = 0 to J = 9,
both in normal conditions, and taking the speed of light
to infinity in the code. The results are shown in Table 2
and Figure 1. There are two group of levels that can be
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Table 2. Total relativistic energy [Ener. (BSC)], including all-
order Breit and QED corrections, total non-relativistic energy
[Ener. (NR)], and NR Offset for the ground configuration of
uranium, relative to the 5f36d7s2 5L6 energy, which is the
lowest level of the configuration. Correlation has not been in-
cluded. One can observe a splitting in the NR energy between
the 5H levels and the 5L levels, which should be exactly degen-
erate. The fine-structure can be improved by subtract the NR
offset from the relativistic energy.

Label Ener. (BSC) Ener. (NR) NR offset
3P0 1.25373 1.22751
5D1 1.62153 1.22803
5G2 1.28675 0.89836
5H3 0.91680 0.70185 0.0251
5H4 1.05358 0.67678 0.0000
5K5 0.14628 0.01169
5L6 0.00000 0.00000 0.0000
5L7 0.42167 0.00181 0.0018
5L8 0.85283 0.00333 0.0033
5L9 1.28393 0.00284 0.0028

Fig. 1. (Color online) Non-relativistic offset on the ground
configuration of uranium. “Ener. (BSC off. sub)”: total MCDF
energy, with all QED corrections, using the full Breit operator
in the SCF process, relative to the 5f36d7s2 5L6 energy to
which the non-relativistic offset has been subtracted. “Ener.
(NR off. sub)”: Total non-relativistic energy, to which the non-
relativistic offset for members of the same LS multiplet has
been subtracted, relative to the 5f36d7s2 5L6 energy. The two
5HJ and the four 5LJ levels have thus identical non-relativistic
energy as it should be. Uncorrected energy and NR offset are
displayed in Table 2.

affected by a NR offset: the 5f36d7s2 5HJ , J = 3, 4 and
the 5f36d7s2 5LJ , J = 6 to J = 9. The non-relativistic
offset is evaluated for both groups of levels as the differ-
ence between the energy of a configuration with a given
J and the one for the configuration with the lower energy
in the NR limit. Figure 1 and Table 2 clearly show a NR
offset of 25 meV for the 5H3 and 5H4, and one of less than
1 meV for the four 5LJ levels. While it can be significant
compared to the accuracy of a laser measurement, it is
probably negligible compared to the accuracy of realistic
correlation calculations.

Fig. 2. (Color online) Non-relativistic offset for the 6FJ , 6KJ

and 6NJ LS configurations for the ground configuration of an
atom with 125 electron. Z = 125, 130 and 1340 have been
evaluated. This contribution should be negligible compared to
correlation. For each LS group, the offset is evaluated by sub-
tracting the lower energy of the group to the others.

In order to assess the generality of this problem,
we have investigated several other characteristic sys-
tems. Element 125, for example, is the first element with
a populated 5g orbital [3,4]. We have calculated the
NR offset for a configuration with 125 electrons [Rn]-
5f146d107s27p68s25g6f4 and Z = 125, 135 and 140. The
results are presented in Figure 2. We find three groups of
levels with LSJ labels, four levels with label 6FJ (J = 1/2
to J = 7/2), three levels with label 6KJ (J = 9/2 to
J = 13/2) and four levels with label 6NJ (J = 15/2 to
J = 21/2). The NR offset in each group is of the order of
a few meV, while the (non-relativistic) energy difference
between the two first groups is 0.19 eV, and between the
first and the last groups is around 0.25 eV. The figure also
shows that the NR offset gets smaller when Z increases as
expected.

We have also investigated the lower excited states of
a somewhat simpler system, element 118 (eka-radon). We
have explored the [Rn]5f146d107s27p58s which should ex-
hibit no NR offset (it has single parent states) and [Rn]-
5f146d107s27p57d. The results are presented in Table 3. As
expected, the 7p58s 3PJ states do not exhibit an NR off-
set, within our numerical accuracy. The 7p57d 3LJ config-
urations however do have a strong NR offset, up to 0.8 eV,
much larger than we expected from the other results pre-
sented above, and the largest ever observed. Clearly, such
a large offset would render any calculation of the fine
structure splitting of eka-radon useless, unless the results
are corrected for the NR offset.

We would like to note that subtracting the NR offset
is only a partial fix, since it was shown in reference [70]
that not only the fine structure is affected, but also the
level energy. The only possible solution are thus to do cal-
culations with a large number of configurations, including
all single excitations, or to use the EAL method. In view
of the complexity of calculations on the superheavy ele-
ments, and of the extra convergence difficulties associated
with the presence of Brillouin excitations, the first solution
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Table 3. Non-relativistic offset on the lower excited configu-
rations of eka-radon (Z = 118). For each member of a multi-
plet, as, e.g., 7p57d 3D, we evaluate the difference between the
member with the lowest non-relativistic energy and the others.
Non-relativistically, all member of a multiplet with identical LS
labels should have an energy independent of the total angular
momentum J .

J 7p57d 3D J 7p57d 3F J 7p57d 3P J 7p58s 3P
1 0.801 2 0.335 0 0.000 0 0.000
2 0.000 3 0.000 1 0.002 1 0.002
3 0.336 4 0.000 2 0.802 2 0.002

Fig. 3. (Color online) Variation with Z of mixing c2 coefficient
for the 1s2p 3P1 level of helium-like ions. BP: only the Coulomb
interaction is used in the SCF process. BSC: the full Breit
interaction is used in the SCF process.

is probably not very universal, but the second one should
always work. In conclusion, we have shown for the first
time, that it is important to check for the non-relativistic
limit in super-heavy elements and to correct for the non-
relativistic offset, as it can be large in some cases.

3.2 Effect of the all-order Breit operator on simple
systems

The use of different form of the electron-electron inter-
action in the self-consistent field process has a profound
qualitative influence on the behavior of variational calcula-
tions that goes beyond changes in energy. In particular the
mixing coefficients between configurations contributing
to intermediate coupling are strongly affected (and thus
the values of many operators would be likewise affected).
For example, let us examine the very simple case of the
1s2p 3P1 state in two-electron system. In a MCDF calcula-
tion, intermediate coupling is taken care of by calculating
| 1s2p 3P1〉 = c1 | 1s2p1/2 J = 1〉 + c2 | 1s2p3/2 J = 1〉.
The evolution as a function of the atomic number Z of
the c2 coefficient, is plotted in Figure 3, with only the
Coulomb interaction, or the full Breit interaction made
self-consistent. The figure shows clearly that the inclusion
of the Breit interaction in the SCF process lead to values
of c2 that are one order of magnitude lower at high-Z that
when only the Coulomb interaction is included. It means

that the JJ coupling limit is reached much faster. This
has some influence even in the convergence of the cal-
culation: as the exchange potential for the 2p3/2 orbital
is proportional to (c1/c2)2, it becomes very large, and the
calculation does not converge. This can be traced back to a
negative energy continuum problem. If we use the method
described in reference [26] to solve for the 2p3/2, then con-
vergence can be reached, provided the projection operator
that suppress coupling between positive and negative en-
ergy solution of the Dirac equation is used. In Figure 4,
the different contributions to the 1s2p 3P1 level energy
are plotted at Z = 40. The minimum, which corresponds
to the level energy, is obtained for a mixing coefficient
(habitually obtained by diagonalization of the Hamilto-
nian matrix), c2 = 0.104. The shape of the magnetic and
retardation energy contribution, as observed on the fig-
ure, shows clearly that the curve used to find the mini-
mum (which represents the sum of the contribution of the
mean values of the operators in Eqs. (3a), (3b), and (4))
is shifted to the left compared to the pure Coulomb con-
tribution. This explain why the mixing coefficients gets
much smaller when using the Breit interaction in place of
the Coulomb interaction in the SCF process. At high-Z
this lead to an extra difficulty to achieve convergence: as
can be seen in Figures 5 and 6, the minimum correspond-
ing to the 1s2p 3P1 state (the one lower in energy) is very
close to c2 = 0. It thus sometimes happens during the
convergence, that c2 changes sign, leading to very tedious
tuning of the convergence process. This is even worse for
the 1s2p 1P1 state, because one is trying to reach the
maximum energy. In that case the oscillation of the c1 co-
efficient around zero are impossible to damp. Obviously,
such problems will slowly disappear when going to neutral
systems. For example, in neutral nobelium (Z = 102) c2
changes only from 0.47250012 to 0.47316712.

4 Relativistic and QED effects on transition
energies and probabilities

4.1 Beryllium isoectronic sequence correlation

It is interesting to investigate simple many-body system,
that can be calculated accurately, to see which kind of
highly relativistic effects can be expected in the limit
Zα → 1. In that sense the beryllium isoelectronic se-
quence is an interesting model case, as it exhibit a very
strong intrashell coupling between the 1s22s2J = 0 and
1s22p2

1/2J = 0 configurations, which are almost degener-
ate in energy. We thus calculated all contributions to the
energy, with and without including the vacuum polariza-
tion and Breit interaction in the SCF process. From this
we could deduce the loop-after-loop Uehling contribution
to the total energy, and the intrashell correlation. Most
quantities contributing to the total energy do not exhibit
any specific behavior when Zα → 1. However, a major
changes in behavior of the system occurs around Z = 125
as shown in Figure 7. One can see that the ground state,
which is 1s22s2 J = 0 at lower Z, becomes 1s22p2

1/2 J = 0.
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Fig. 4. (Color online) Variation of the differ-
ent contributions to the energy as a function of
the mixing coefficient c2, for the 1s2p 3P1 level
at Z = 40. The arrow indicates the position of
the 1s2p 3P1 energy, at the minimum around
c2 = 0.104. Left axis: “Mag.”: magnetic en-
ergy, equation (3b). “Ret.”: Breit retardation,
equation (4). “H.O. Ret.”: higher-order retar-
dation. Right axis: “Coul.”: Coulomb energy
equation (3a). “Total e-e”: sum of the 4 preced-
ing contributions. “Total”: total level energy
including all QED corrections.

Fig. 5. (Color online) Variation of the differ-
ent contributions to the energy as a function of
the mixing coefficient c2, for the 1s2p 3P1 level
at Z = 92. The arrow indicates the position of
the 1s2p 3P1 energy, at the minimum around
c2 = 0.002. Left axis: “Mag.”: magnetic en-
ergy, equation (3b). “Ret.”: Breit retardation,
equation (4). “H.O. Ret.”: higher-order retar-
dation. Right axis: “Coul.”: Coulomb energy
equation (3a). “Total e-e”: sum of the 4 preced-
ing contributions. “Total”: total level energy
including all QED corrections.

Fig. 6. (Color online) Variation of the differ-
ent contributions to the energy as a function of
the mixing coefficient c1, for the 1s2p 1P1 level
at Z = 92. The arrow indicates the position of
the 1s2p 1P1 energy, at the maximum around
c1 = 0.002. Left axis: “Mag.”: Magnetic en-
ergy, equation (3b). “Ret.”: Breit retardation,
equation (4). “H.O. Ret.”: higher-order retar-
dation. Right axis: “Coul.”: Coulomb energy
equation (3a). “Total e-e”: sum of the 4 preced-
ing contributions. “Total”: total level energy
including all QED corrections.
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Fig. 7. (Color online) Loop-after-loop Uehling contribution
to berylliumlike ions ground state energy (changed of sign),
obtained by including the Uehling potential in the SCF. The
intrashell correlation energy is also plotted (left axis), as well
as the square of the mixing coefficients of the 1s22s2 J = 0,
1s22p2

1/2 J = 0 and 1s22p2
3/2 J = 0 configurations (right axis).

This can be seen on the mixing coefficients as plotted in
Figure 7. This translates into a strong increase in the loop-
after-loop vacuum polarization contribution. Obviously, if
we were able to evaluate other second-order QED calcu-
lation than loop-after-loop vacuum polarization, includ-
ing off-diagonal two-electron self-energy matrix elements
for quasi-degenerate state, following recent work on heli-
umlike systems [71–73], there could be more unexpected
effects to observe.

While not displaying such a feature, the total correla-
tion energy increases strongly, reaching up to 3.6 keV. One
can observe effects on other properties of the atom, like
orbital energies and mean orbital radius. Figure 8 shows
that, in the same atomic number range when the ground
state changes of structure, the 2p3/2 orbital radius and
energy exhibit a very strong change. The behavior of the
ground state must be connected to the fact that the small
component of 2p1/2 orbitals, as can be seen from equa-
tion (7), has a s behavior, and the ratio between small
and large component is of order Zα. It is thus under-
standable that such effects could occurs when Zα→ 1. It
should be noted that this effects happens even with a pure
Coulomb electron-electron interaction, which is one more
proof it is only connected with the behavior of the one-
electron wavefunctions. We investigated the similar case
of the magnesiumlike sequence, which exhibit strong in-
trashell coupling between the 3s, 3p and 3d orbitals, but
we could not observe any effect on energies in this range
of Z. However the [Ne]3p2

1/2 mixing coefficient started to
increase faster around Z = 128, but convergence problems
prohibited us to investigate higher Z.

4.2 Relativistic correlations on the neon isoelectronic
sequence

Calculating completely correlated energies can be per-
formed only on relatively small systems. Neonlike ions,

Fig. 8. (Color online) Orbital radii (right axis) and one-
electron energies (left axis) for Be-like ions.

Table 4. Total correlation energy for neonlike ions, with the
Breit interaction included in the SCF, as a function of the most
excited orbital included in the basis set.

Z all → 3d all → 4f all → 5g all → 6h
10 −5.911 −8.306 −9.339 −9.709
15 −5.989 −8.712 −9.838 −10.280
25 −6.374 −9.310 −10.494 −10.967
35 −6.710 −9.850 −11.099 −11.609
45 −7.074 −10.482 −11.816 −12.372
55 −7.515 −11.269 −12.710 −13.322
65 −8.067 −12.260 −13.833 −14.511
75 −8.752 −13.375 −15.247 −16.007
85 −9.772 −15.119 −17.056 −17.916
95 −11.160 −17.231 −19.429 −20.415
105 −13.205 −20.146 −22.700 −23.853
114 −15.975 −23.966 −26.974 −28.332
124 −21.222 −30.897 −34.694 −36.389
130 −26.714 −37.777 −42.304 −44.300
134 −32.248 −44.412 −49.598 −51.860

with 10 electrons are a small enough system that can be
calculated with rather large basis sets. We have extended
the calculation performed in reference [7] to superheavy
elements (Z = 134). All 10 electrons are excited to all vir-
tual orbitals up to a maximum n�, that is varied from 3d
to 6h. The results are presented in Table 4 and plotted in
Figure 9. The trend found up to Z = 94 in reference [7]
extend smoothly to larger Z, but is enhanced. The total
correlation energy becomes very large. It doubles when
going from Z = 95 to Z = 134, the highest Z for which
convergence could be reached. The speed of convergence
as a function of n� does not change with increasing Z.

4.3 Transition energies and probabilities in nobelium
and element 118 (eka-radon)

In this section we study the different contributions to the
energy and transition probabilities of nobelium (Z = 102)
and eka-radon (Z = 118). Nobelium is the next candidate
for measurement of its first excited levels transition energy
by laser spectroscopy. Large scale calculations have been
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Fig. 9. (Color online) Total correlation energy for neonlike
ions, with the Breit interaction included in the SCF, as a func-
tion of the most excited orbital included in the basis set.

performed recently [21]. Here we examine a number of cor-
rections not considered in reference [21]. For the 7s2 1S0

ground state, we did a MCDF calculation taking into ac-
count all single and double excitations, except the ones
corresponding to the Brillouin theorem, from the 5f and
7s shells to the 7p, and 6d shells (48 jj configurations). For
the excited states we included excitations from 5f , 7s and
7p shells to the 7p and 6d ones. This leads to 671 jj con-
figurations for the 7s7p 3P1 and 7s7p 1P1 states and 981
for 7s7p 3P2. The results of this calculation are presented
in Table 5 for the transition energies and in Table 6 for
transition probabilities. It is clear from these two tables
that many contributions that are important for level en-
ergies are completely negligible for transition probabilities
in this case. This is not true for highly charged ions, even
at much lower Z. In particular two-loop QED corrections,
even though many of them have not been calculated from
n > 2, should remain completely negligible, since they
will be of the same order of magnitude as the loop-after-
loop and Källèn and Sabry contributions. The self-energy
screening is almost exactly compensating the self-energy,
but leaves a contribution that should be visible if one can
calculate correlation well enough. At the present level of
accuracy, calculation of the pure Coulomb correlation is
the real challenge as it requires considerable effort on the
size of configuration space.

The transition probabilities in Table 6 have been eval-
uated with different approximation, using theoretical en-
ergies. Here the choice of the wavefunction optimization
technique has a sizeable effect. It remains small compared
to correlation, but still at the level of 0.2%. We also inves-
tigated the effect of using fully relaxed orbitals on both
initial and final state. In particular we checked at the
Dirac-Fock level of approximation, what is the order of
magnitude of taking into account non-orthogonality be-
tween initial and final state orbitals. We found 2.2% for
the 3P1 → 1S0 transition, 0.014% for the 1P1 → 1S0

transition and −0.025% for the 3P2 → 1S0. For calcula-
tions between correlated wavefunctions, it is anyway im-
portant to evaluate the matrix elements for off-diagonal
operators, taking account non-orthogonalities between

Table 5. Transition energies for the lower energy levels of
nobelium (eV). Coul.: DF Coulomb energy. Mag. (pert), Ret.
(pert.), Higher order ret. (pert.): contribution of the Magnetic,
Breit retardation and higher-order retardation in first order of
perturbation. All order Breit: effect of including the full Breit
interaction in the SCF. Coul. Corr.: Coulomb correlation. Breit
Corr.: contribution of all Breit terms to the correlation energy.
Self-energy (FS): self-energy and finite size correction. Self-
energy screening: Welton approximation to self-energy screen-
ing. Vac. Pol. (Uehling): mean value of the Uehling poten-
tial (order α(Zα)). VP (muons, Uehling): vacuum polarization
due to muon loops. VP Wichman and Kroll: correction to the
Uehling potential (order α(Zα)3). Loop-after-loop V11: iter-
ated Uehling contribution to all orders. VP (Källèn et Sabry):
two-loop contributions to vacuum polarization. Other 2nd or-
der QED: sum of two-loop QED corrections not accounted for
in the two previous one. Recoil: sum of lowest order recoil cor-
rections (see, e.g., [74]). The number of digits presented in the
table is not physically significant, but is necessary to show the
size of some contributions. The physical accuracy is not better
than 1 digits.

Contribution 3P1 → 1S0
1P1 → 1S0

3P2 → 1S0

Coul. 1.69909 3.20051 2.19931
Mag. (pert) 0.00070 −0.00420 −0.00347
Ret. (pert.) −0.00048 0.00005 −0.00058
Higher order ret. (pert.) −0.00119 0.05048 −0.00231
All order Breit (pert) 0.00002 −0.05877 0.00003
Coul. Corr. 0.59560 0.60414 0.55545
Breit Corr. −0.00208 −0.00229 −0.00194
Self-energy (FS) −1.60884 −1.72025 −1.76085
Self-energy screening 1.59030 1.72940 1.74228
Vac. Pol. (Uehling) 0.00610 0.00435 0.00648
VP (muons. Uehling) 0.00000 0.00000 0.00000
VP Wichman and Kroll −0.00030 −0.00019 −0.00033
Loop-after-loop Uehl. 0.00002 0.00012 0.00003
VP (Källèn and Sabry) 0.00004 0.00002 0.00005

Other 2nd order QED 0.00000 0.00000 0.00000
Recoil −0.00082 −0.00081 −0.00082

Total 2.28 3.80 2.73
Ref. [21] II 2.34 3.49
Ref. [21] I 2.60 3.36

initial and final state orbitals, as it can change dramat-
ically the contribution of a given CSF, since overlaps be-
tween correlations orbitals in initial and final states can
be very different from either one or zero.

We have also calculated several transition energies and
rates for element 118, which are displayed in Table 7.
For the most intense 7p57d → 7s27p6 transitions and for
the 7p58s → 7s27p6 transitions we did a MCDF calcu-
lation, taking into account all single and double excita-
tions, (except the ones corresponding to the Brillouin the-
orem) from the 7s and 7p shells to the 7d and 6f shells
for the 7p6 1S0 ground state (38 jj configurations) and
for the 7p57d excited states (657 jj configurations), and
from the 7p and 8s shells to the 7d and 6f shells for
the 7p58s excited states (151 jj configurations).

The transition energy was calculated for some of
these transitions, with and without including the vacuum
polarization and Breit interaction in the SCF process, and
we concluded that the transition energy is not significantly



164 The European Physical Journal D

Table 6. Effect of correlation, Breit interaction and all order vacuum polarization on transition probabilities of nobelium. DF:
Dirac-Fock. VP: vacuum polarization. ex.: excitation.

initial 7s7p 2S+1PJ DF 7s7p 2S+1PJ ex. 7s, 7p → 7p, 6d 7s7p 2S+1PJ ex. 5f , 7s, 7p → 7s, 7p, 6d
final → 7s2 1S0 DF → 7s2 1S0 ex. 7s → 7p, 6d → 7s2 1S0 ex. 7s → 7p, 6d

7s7p 3P1 → 7s2 1S0 (E1)
Breit Pert.; VP. Pert. 1.071 × 106 3.520 × 106 1.947 × 106

Breit Pert.; VP SC 1.073 × 106 3.526 × 106 1.954 × 106

Breit SC; VP Pert. 1.062 × 106 3.501 × 106 1.920 × 106

Breit SC; VP SC 1.064 × 106 3.507 × 106 1.927 × 106

7s7p 1P1 → 7s2 1S0 (E1)
Breit Pert.; VP. Pert. 2.705 × 108 3.500 × 108 3.680 × 108

Breit Pert.; VP SC 2.697 × 108 3.559 × 108 3.738 × 108

Breit SC; VP Pert. 2.711 × 108 3.509 × 108 3.686 × 108

Breit SC; VP SC 2.704 × 108 3.568 × 108 3.743 × 108

7s7p 3P2 → 7s2 1S0 (M2)
Breit Pert.; VP. Pert. 1.717 × 10−4 5.187 × 10−4 5.492 × 10−4

Breit Pert.; VP SC 1.713 × 10−4 5.173 × 10−4 5.477 × 10−4

Breit SC; VP Pert. 1.721 × 10−4 5.200 × 10−4 5.513 × 10−4

Breit SC; VP SC 1.717 × 10−4 5.187 × 10−4 5.499 × 10−4

Table 7. Transition energies and transition rates to the ground state 5f156d107s27p6 1S0 of eka-radon (element 118). The
transition values from states labeled with c were calculated with correlation up to 6f , as well as the ground state.

Initial state Transition energy (eV) Transition rate (s−1)

5f15 6d10 7s2 7p5 7d 3D1 +3 P1
c 10.43 9.86 × 108

3P1
c 6.81 5.53 × 107

3D1 +1 P1
c 7.2 9.98 × 106

3P2 6.08 1.41 × 10−2

3F2 16.95 1.11 × 10−2

3F3 6.15 1.30 × 10−3

1D2 6.25 1.10 × 10−3

3D3 6.22 7.52 × 10−4

3F4 6.01 3.91 × 10−14

3P0
c 6.64

5f15 6d10 7s27p58s 1P1
c 4.73 2.04 × 108

3P2
c 4.3 2.04 × 10−3

Fig. 10. (Color online) Changes in the 7p58s 3P1 →
7s27p6 1S0 transition energy with respect to the approxima-
tion made, for element 118. BSC: Breit self-consistent. VPSC:
Uelhing potential self consistent. BP: Breit in perturbation.
VPP: Uelhing vacuum polarization in perturbation.

affected by the inclusion of these interactions in the SCF.
This is illustrated in Figure 10 that shows the transition
energy values for 7p57d 3P1 transition.

5 Relativistic and QED effects on Landé
factors, atomic radii and electronic densities

Although transition energies and probabilities, as well as
ionization potential, are important quantities, it is in-
teresting to study relativistic and QED effects on other
atomic parameters, like Landé g-factors, atomic radii
and electronic densities. Landé factors, which define the
strength of the coupling of an atom to a magnetic field,
can help characterize a level.

In some experiments concerning superheavy elements,
singly ionized atoms are drifted in a gas cell, under the in-
fluence of an electric field. The drift speed can be related,
in first approximation, to the charge distribution radius of
the ion [75,76]. In this context, it can also be interesting
to look at the atomic density, and see how it is affected
by relativistic and QED effects. In that case, though, we
can only get a feeling of this effect by comparing den-
sities calculated with and without the Breit interaction
self-consistent, or with and without the Uehling potential
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Fig. 11. (Color online) Total electronic density of Fm+. The
vertical lines represents, from left to right the mean radius, the
mean spherical radius (“rms”) and the mean radius of the out-
ermost orbital (7s). “Density”: total electronic density equa-
tion (10). “Diff (Bsc)”: absolute value of the variation in the
density due to the inclusion of the Breit interaction in the SCF.
“Diff (Vsc)”: absolute value of the variation in the density due
to the inclusion of the Uehling potential in the differential equa-
tions (NB: the dip in the curve correspond to sign changes of
the correction).

included in the differential equation. There is currently no
formalism that would enable to account for changes in the
wavefunction related to the self-energy.

We define the radial electronic density as

r2ρ (r) =
∫
dΩr2ρ (r,Ω)

=
∑

i∈occ.orb.

�i

(
Pi (r)2 +Qi (r)2

)
, (10)

where P and Q are defined in equation (7), and the �i

are the orbital effective occupation numbers,

�i =
∑

j

c2jn
i
j , (11)

where the sum extend over all configuration containing
orbital i, and ni

j is the occupation number of this or-
bital in the configuration j. The density is normalized to∫ ∞
0
drr2ρ (r) = Ne, where Ne is the number of electrons

in the atom or ion.
The effect of the Breit interaction and vacuum polar-

ization on the charge density of the ground state of Fm+

([Rn]5f126s) is shown in Figure 11. The inclusion of both
contributions leads to local changes of around 1% in the
charge density. It is rather unexpected that both contri-
bution extend their effects way pass their range, in par-
ticular for the vacuum polarization potential, which has a
very small contribution for r > 1/α = 0.0073 a.u.

Charge distribution can be described in a number of
ways, and the definition of atomic or ionic radius has
evolved over the years. Slater noticed a long time ago the

Fig. 12. (Color online) Contribution to the mean radius 〈r(p)
at. 〉

to Sg+ of individual values of �i〈r(p)
ni,li,ji

〉 for the different
orbitals and p = 1 and 2, together with the total values on
the right. Stared orbital labels correspond to the orbital with
j = l − 1

2
.

correlation between the value of the maximum charge den-
sity of the outermost core electron shell and the ionic ra-
dius of an atom [77]. Such a definition, however, does not
provide a way to take into account mixing of outer shell in
MCDF calculations. Other authors have chosen either the
mean radius of a specific orbital 〈rn,l,j〉 [78] or weighted
mean radius [79]. Results have been obtained for bohrium
and hassium. It is not at all obvious either than what is
true in crystals must be valid for singly charged ions drift-
ing in a gas. Here we have evaluated four different quan-
tities and their dependence in the Breit interaction and
vacuum polarization. We have evaluated the position of
the maximum density of the outermost orbital, the mean
radius of the outermost orbital 〈rn,l,j〉, the atom mean ra-
dius, and the atom mean spherical radius. The two first
quantities have been tested in detail, but they cannot rep-
resent the ionic radius when one has a complex outer shell
structure or when one calculate correlation. The mean
radius of the atom is represented as

〈r(p)
at. 〉 =

1
Ne

∫ ∞

0

drrpr2ρ (r)

=
1
Ne

∑
i∈occ.orb.

�i〈r(p)
ni,li,ji

〉 (12)

for p = 1, and the mean spherical radius is obtained as√
〈r(2)at. 〉. Both can be calculated in a MCDF model, as the

�i contain both the occupation numbers and the mixing
coefficients. As an example, we have plotted the contri-
bution to 〈r(p)

at. 〉 to Sg+ in Figure 12 of individual values
of �i〈r(p)

ni,li,ji
〉 for the different orbitals. Contrary to the

individual orbitals quantities or to the average performed
only on the outer shell, like in reference [9], both quanti-
ties have sizeable contributions from several outer shells.
The 7s, 6p, 5f and 6d contribute significantly to both the
mean and the mean spherical atomic radius, but the con-
tribution of the 6d orbitals is more dominant for the mean
spherical radius. The results for singly charged ions with
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Table 8. Singly ionized atom radii (a.u.) for lanthanide 57 ≤ Z ≤ 71 and actinide and transactinide 90 ≤ Z ≤ 108.

Z Config. Label 〈r〉 √〈r2〉 outer orb.
lab. Rmax 〈4f5/2〉 〈4f7/2〉 〈5d3/2〉 〈5d7/2〉 〈6s1/2〉

57 5d2 3F2 0.6903 1.0365 5d 2.2820 2.8629 2.8900
58 4f5d2 4H7/2 0.6789 1.0121 5d 2.2005 1.0862 1.1033 2.7568 2.7949

59 4f36s 5I4 0.6750 1.0458 6s 3.8004 1.0589 1.0667 4.2924
60 4f46s 6I7/2 0.6646 1.0256 6s 3.7359 1.0054 1.0190 4.2252

61 4f56s 7H2 0.6544 1.0062 6s 3.6741 0.9624 0.9796 4.1608
62 4f66s 8F1/2 0.6442 0.9874 6s 3.6171 0.9249 0.9392 4.1012

63 4f76s 9S4 0.6342 0.9692 6s 3.5627 0.8920 0.8999 4.0438
64 4f75d6s 10D5/2 0.6357 0.9708 6s 3.3408 0.8218 0.8221 2.4547 2.4846 3.7930

65 4f96s 7H8 0.6162 0.9373 6s 3.4711 0.8502 0.8541 3.9568
66 4f106s 6I17/2 0.6074 0.9219 6s 3.4289 0.8254 0.8345 3.9163

67 4f116s 5I8 0.5987 0.9070 6s 3.3871 0.8022 0.8165 3.8758
68 4f126s 4H13/2 0.5903 0.8926 6s 3.3464 0.7804 0.7995 3.8359

69 4f136s 3F4 0.5820 0.8786 6s 3.3070 0.7605 0.7811 3.7976
70 4f146s 2S1/2 0.5739 0.8649 6s 3.2699 0.7430 0.7613 3.7611

71 4f146s2 1S0 0.5876 0.9133 6s 2.9761 0.6922 0.7057 3.4229
〈5f5/2〉 〈5f7/2〉 〈6d3/2〉 〈6d7/2〉 〈7s1/2〉

90 5f26d 4K11/2 0.5873 0.9117 6d 2.5751 1.96004 1.95812 3.16141 3.18613

91 5f26d7s 5K5 0.5977 0.9521 7s 3.5491 1.54181 1.57544 2.85704 2.9741 3.99617
92 5f36d7s 6L11/2 0.5926 0.9377 7s 3.4779 1.42706 1.44552 2.78857 2.86351 3.92351

93 5f46d7s 7L5 0.5873 0.9239 7s 3.4116 1.3478 1.36699 2.72666 2.79424 3.85537
94 5f56d7s 8K7/2 0.5821 0.9107 7s 3.3498 1.28511 1.30541 2.67874 2.73928 3.7917

95 5f77s 9S4 0.5699 0.8822 7s 3.4279 1.27013 1.29869 3.8992
96 5f77s2 8S7/2 0.5805 0.9217 7s 3.2104 1.16578 1.18716 3.65864

97 5f86d7s 9G7 0.5670 0.8761 7s 3.1840 1.14449 1.16614 2.62581 2.688 3.62195
98 5f107s 6I17/2 0.5553 0.8493 7s 3.2905 1.14462 1.18171 3.77066

99 5f117s 5I8 0.5503 0.8385 7s 3.2461 1.10705 1.14777 3.72772
100 5f127s 2H11/2 0.5456 0.8293 7s 3.2294 1.07281 1.11537 3.72114

101 5f137s 3F4 0.5403 0.8174 7s 3.1625 1.0417 1.08491 3.64662
102 5f147s 2S1/2 0.5353 0.8071 7s 3.1235 1.01352 1.05406 3.6087

103 5f147s2 1S0 0.5435 0.8385 7s 2.8837 0.95846 0.990419 3.32578
104 5f146d7s2 2D3/2 0.5441 0.8392 7s 2.7464 0.917421 0.941578 2.33571 3.16377

105 5f146d27s2 3F2 0.5436 0.8355 7s 2.6309 0.881333 0.900734 2.17264 2.25313 3.02942
106 5f146d47s 6D1/2 0.5376 0.8127 7s 2.5150 0.850008 0.867203 2.11798 2.21807 2.87277

107 5f146d47s2 5D0 0.5409 0.8240 7s 2.4351 0.820103 0.834045 1.95902 2.01018 2.80344
108 5f146d57s2 6S5/2 0.5396 0.8183 7s 2.3426 0.790744 0.807474 1.86004 1.95516 2.69468

Table 9. Correlation effects on the mean radius and mean spherical radius of No.

〈r〉 (a.u.) var.
√〈r2〉 (a.u.) var.

Ra5f147s2 1S0 0.574391 0.932605

+ excit. of 7s → 7p, 6d 0.573724 −0.12% 0.928191 −0.47%

+ excit. of 7s, 5f → 7p, 6d 0.573309 −0.19% 0.925313 −0.78%

57 ≤ Z ≤ 71 and 90 ≤ Z ≤ 108 are presented in Ta-
ble 8 and plotted in Figure 13. The comparison between
mean radius and mean spherical radius with the Breit in-
teraction in the SCF process with Coulomb values, shows
changes around 0.04% to 0.08% depending on the atomic
number. Self-consistent vacuum polarization has an effect
2 to 4 times smaller, depending on the element. We em-
phasize the fact that we used for the ion the configuration
corresponding to the ground state of a Dirac-Fock calcu-
lation (i.e., without correlation), as given in [6]. For a few
elements, the physical ground state configuration, as given
for example on the NIST database, is different.

We have used the definition above to evaluate the effect
of correlation on the ion radii. The calculation has been
performed on neutral nobelium (Z = 102). The results are
presented in Table 9. One can see that the radius of maxi-
mum density follows exactly the trend of the mean radius
of the outer orbital. However the atomic mean radius and
mean spherical radius follow a different trend.

Fig. 13. (Color online) Variation of 〈r〉, √〈r2〉 (right scale), of
the radius of the outermost orbital 〈rout〉 and of the maximum
of the charge density of the outer orbital (Rmax dens.) (left
scale) as a function of the atomic number Z.
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Table 10. Comparison between different definition of the ionic
radii and experiment. We define the average radius of 5f or-
bitals as ¯〈r5f 〉 = (6〈r5f5/2〉 + 8〈r5f7/2〉)/14.

Exp. Theo.
∆rAm+−Pu+ [75] −3.1% (± 1.3%) 〈rAt.〉 −2.1%√〈r2

At.〉 −3.1%
¯〈r5f 〉 −0.8%

〈r7s〉 2.8%
∆rFm+−Cf+ [18] −2.0% 〈rAt.〉 −1.7%√〈r2

At.〉 −2.4%
¯〈r5f 〉 −5.9%

〈r7s〉 −1.3%

There has been two experiments measuring drift time
of singly ionized transuranic elements in gases. One mea-
sured the relative velocity of Am+ with respect to Pu+ [75]
and an other one measured the same quantity for Cf+
and Fm+ [18]. The results of these experiments are ex-
pressed as

∆rA−B =
rA − rB
rB

. (13)

The experiments above provide ∆rAm+−Pu+ = −3.1 ±
1.3% and ∆rFm+−Cf+ = −2% respectively, which shows a
shrinkage of Am as compares to Pu and of Fm as com-
pared to Cf. The comparison between these experiments
and the calculation of singly charged ion radii from Table 8
is shown in Table 10. Although it is difficult to draw any

firm conclusion from so few data, it seems that
√
〈r(2)at. 〉 re-

produces best the experiment, followed by 〈r(1)at. 〉. We want
to point out that the 〈r7s〉 values for neutral atom, from
reference [5], or ours, which are in good agreement gives a
−1.5% change for Am/Pu and −3.0% for Fm/Cf, compare
well with experiment. The 7s radius of the singly charged
ions, as shown in Table 8, increases when going from Am
to Pu, thus leading to a ratio of the wrong sign, while the
5f average radius, or the global atomic radii as defined
here all show the right trend. The change of behavior for
Am, is due to the relative diminution of the l(l + 1)/r2
barrier compared to the Coulomb potential as a function
of Z. The 5f radius reduces then strongly, leading to the
change of the structure of the ground configuration, and
to the change of the radius of the 7s orbital.

QED corrections on Landé factors of one and three
electron atoms have been studied in great details in the
last few years, because of the increase in experimental
accuracy associated with the use of Penning traps in
a new series of experiments [80,81]. These experiments
provided a strong incentives to evaluate very accurately
QED corrections on Landé factors, beyond the one due
to the anomalous magnetic moment of the electron [82–
89]. To our knowledge, there has been only one calculation
dealing with QED corrections in heavy elements, in which
the Feynman diagrams corresponding to self-energy and
other corrections were evaluated. This calculation con-
cerned alkali elements up to francium (Z = 87) [90]. Here
we deal with much more complex system, with several

open shells, and we calculate QED corrections due to the
inclusion of the Breit interaction and of the vacuum po-
larization in the SCF, as well as the contribution from
the electron anomalous moment. The coupling of an atom
with a magnetic moment µ to a homogeneous magnetic
field B gives an energy change

∆E = −µ · B (14)

where µ = −gJµBJ , gJ being the Landé factor and µB the
Bohr magneton. The anomalous electron magnetic mo-
ment corrections can be written (see, e.g., [91] and refer-
ence therein) as

∆gJ = (g − 2)
〈J ||βΣ||J〉√

J(J + 1)(2J + 1)
(15)

where g = 2
(
1 + α

π + · · · ) is the electron magnetic mo-

ment, β and Σ are 4 × 4 matrices, β =
(
I 0
0 I

)
and

Σ =
(

σ 0
0 σ

)
where I is a 2 × 2 identity matrix and σ

are Pauli matrices.
As an example, we illustrate the different effects by

evaluating the Landé g-factors for the ground configura-
tion of neutral actinide and transactinide up to Z = 106,
and of singly ionized lanthanide, actinide and transac-
tinide up to Z = 106. The results are displayed in Ta-
ble 11 for neutral atoms and in Table 12, for singly ionized
atoms. The ground configuration of neutral atom comes
from [92]. For singly ionized atoms, it has been taken from
reference [6] for Z up to 106 and from [9] for Z = 107 and
108. Depending on the outer shell structures, the QED
corrections can be dominated by either the g − 2 correc-
tion or the Breit correction (order of 0.1% of the Landé
factor). The vacuum polarization correction is at best one
order of magnitude smaller at Z = 106.

In Table 13, we present correlation effects on the Landé
g-factor of the lowest levels of No, evaluated with the same
wavefunctions as in Section 4.3, with the Breit operator
in the SCF process. The effect of correlation ranges from
0.6% to 0.02% depending on the level.

6 Conclusions

In this work we have evaluated the effects of self-consistent
Breit interaction and vacuum polarization on level en-
ergies, transition energies and probabilities, and Landé
g-factors on super-heavy elements. We have also stud-
ied their effect on orbitals and atomic charge distribu-
tion radii and found very large effects on highly charged
ions. We have found some hints, when studying Be-like
ions, of rather strong non-perturbative correlation effects
for Z ≈ 128. For neutral or quasi-neutral systems, self-
consistent Breit interaction and vacuum polarization have
a small but noticeable effects on Landé factor and tran-
sition rates, which could be felt experimentally. Transi-
tion energies, on the other hand, are heavily dominated by
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Table 11. QED [Eq. (15)], Breit and Uehling corrections on Landé g-factors of neutral atoms with 90 ≤ Z ≤ 106.

Z Conf. Label Landé (Coul.) QED corr. Breit contr. Uehl. corr. Total

90 6d27s2 3F2 0.68158912 −0.00073903 −0.00031059 −0.00002136 0.68051814
91 5f26d7s2 4K11/2 0.81847964 −0.00042068 −0.00020095 −0.00001531 0.81784271
92 5f36d7s2 5L6 0.73962784 −0.00060501 −0.00090733 −0.00001069 0.73810480
93 5f46d7s2 6L11/2 0.63735126 −0.00084251 −0.00108525 −0.00000780 0.63541570
94 5f67s2 7F0

95 5f77s2 8S7/2 1.96702591 0.00224893 0.00193804 0.00000967 1.97122254
96 5f76d7s2 9D2 2.60336698 0.00372915 0.00336317 0.00002669 2.61048600
97 5f97s2 6H15/2 1.29988703 0.00070147 0.00177562 0.00000642 1.30237054
98 5f107s2 5I8 1.22357731 0.00052300 0.00108516 0.00000375 1.22518921
99 5f117s2 4I15/2 1.18834647 0.00043997 0.00047015 0.00000159 1.18925817

100 5f127s2 3H6 1.16189476 0.00037811 0.00019838 0.00000062 1.16247187
101 5f137s2 2F7/2 1.14180915 0.00033132 0.00005605 0.00000020 1.14219672
102 5f147s2 1S0

103 5f147s27p 2P1/2 0.66661695 −0.00077309 0.00003007 0.00000003 0.66587396
104 5f146d27s2 3P0

104 5f147s27p2 3F2 0.69055158 −0.00071837 −0.00035975 −0.00006392 0.68940954
105 5f146d37s2 4F3/2 0.45467514 −0.00126763 −0.00122595 −0.00016406 0.45201750
106 5f146d47s2 5D0

Table 12. QED [Eq. (15)], Breit and Uehling corrections on Landé g-factors of the ground configuration of singly ionized atoms
with 57 ≤ Z ≤ 71 and 90 ≤ Z ≤ 108.

Z Conf. Label Landé (Coul.) QED corr. Breit contr. Uehl. corr. Total

57 5d2 3F2 0.66973929 −0.00076609 −0.00012975 −0.00000075 0.66884270
58 4f5d2 4H7/2 0.71736392 −0.00065375 0.00039406 −0.00000787 0.71709635
59 4f36s 5I4 0.60262203 −0.00092068 −0.00031540 −0.00000026 0.60138569
60 4f46s 6I7/2 0.44690832 −0.00128150 −0.00029522 −0.00000023 0.44533137
61 4f56s 7H2 0.00677005 −0.00230319 −0.00086739 −0.00000061 0.00359886
62 4f66s 8F1/2 3.95749786 0.00687585 0.00701619 0.00001509 3.97140499
63 4f76s 9S4 1.99480186 0.00230987 0.00035927 0.00000034 1.99747133
64 4f75d6s 10D5/2 2.56089325 0.00362452 0.00067458 0.00000119 2.56519354
65 4f96s 7H8 1.36838651 0.00085813 0.00067487 0.00000040 1.36991992
66 4f106s 6I17/2 1.28727646 0.00067021 0.00068999 0.00000039 1.28863705
67 4f116s 5I8 1.24630282 0.00057447 0.00033068 0.00000018 1.24720815
68 4f126s 4H13/2 1.22865909 0.00053325 0.00015805 0.00000008 1.22935048
69 4f136s 3F4 1.24882255 0.00057982 0.00006252 0.00000004 1.24946493
70 4f146s 2S1/2 1.99992029 0.00231927 −0.00000949 −0.00000006 2.00223002
71 4f146d2 1S0

90 5f26d 4K11/2 0.80868853 −0.00044409 −0.00040145 −0.00001738 0.80782561
91 5f26d7s 5K5 0.69942415 −0.00069727 −0.00041498 −0.00003386 0.69827803
92 5f36d7s 6L11/2 0.63834785 −0.00083965 −0.00081792 −0.00001647 0.63667382
93 5f46d7s 7L5 0.52126261 −0.00111157 −0.00103625 −0.00001135 0.51910344
94 5f56d7s 8K7/2 0.26613829 −0.00170714 −0.00271582 −0.00002210 0.26169324
95 5f77s 9S4 1.97238902 0.00226041 0.00159104 0.00001036 1.97625083
96 5f77s2 8S7/2 1.95878066 0.00223118 0.00242861 0.00001187 1.96345232
97 5f86d7s 9G7 1.48746928 0.00113601 0.00161739 0.00001838 1.49024105
98 5f107s 6I17/2 1.27036131 0.00063117 0.00097651 0.00000581 1.27197480
99 5f117s 5I8 1.23940637 0.00055819 0.00042388 0.00000222 1.24039065

100 5f127s 2H11/2 1.09903182 0.00023261 0.00025286 0.00000531 1.09952260
101 5f137s 3F4 1.24906758 0.00057982 0.00004304 0.00000013 1.24969057
102 5f147s 2S1/2 1.99988521 0.00231927 −0.00002001 −0.00000035 2.00218413
103 5f147s2 1S0

104 5f146d7s2 2D3/2 0.79977826 −0.00046385 0.00005358 0.00000012 0.79936810
105 5f146d27s2 3F2 0.70320927 −0.00068901 −0.00043211 −0.00005473 0.70203342
106 5f146d47s 6D1/2 3.19780436 0.00510655 0.00311970 0.00051784 3.20654845
107 5f146d47s2 5D0

108 5f146d57s2 6S5/2 1.87088576 0.00203080 0.00399742 0.00034326 1.87725723
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Table 13. Correlation effect on the Landé g-factor of the first
excited states of nobelium.

Level 7s7p3P1 7s7p1P1 7s7p3P2

DF 1.49073 1.00932 1.50111
7, 7p exc. → 7p, 6d 1.47691 1.02829 1.50027
7, 7p, 5f exc. → 7p, 6d 1.48845 1.01507 1.50080

Coulomb correlation. This is rather good news, since treat-
ing the Breit interaction self-consistently obliges to eval-
uate magnetic and retardation integrals during the SCF
process, which are about one order of magnitude more nu-
merous than Coulomb ones, leading to calculations that
cannot fit on even on the largest computers available to-
day, even with relatively small configuration space.

We have shown that very large non-relativistic offset
may affect the fine structure separation of elements with
several open shells. This should be carefully taken into
account to avoid providing completely wrong results with
all-order methods. We have also shown that the inclusion
of the Breit interaction in the SCF process, because it get
mixing coefficients closer to the jj limit, can noticeably
complicate numerical convergence.
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80. H. Häffner, T. Beier, N. Hermanspahn, H.J. Kluge,

W. Quint, S. Stahl, J. Verdu, G. Werth, Phys. Rev. Lett.
85, 5308 (2000)

81. J. Verdu, S. Djekic, S. Stahl, T. Valenzuela, M. Vogel,
G. Werth, T. Beier, H.J. Kluge, W. Quint, Phys. Rev.
Lett. 92, 093002 (2004)

82. H. Persson, S. Salomonson, P. Sunnergren, I. Lindgren,
Phys. Rev. A 56, R2499 (1997)

83. T. Beier, I. Lindgren, H. Persson, S. Salomonson,
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